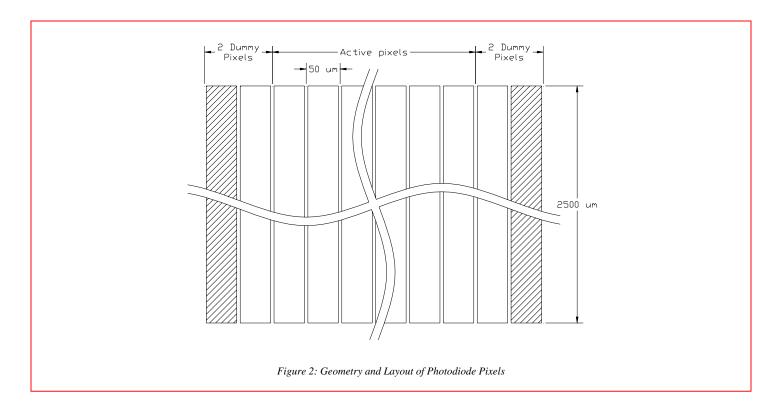

1.0 Description

AMI Semiconductor's WSN series is a family of self-scanning photodiode solid-state linear imaging arrays. These photodiode sensors employ AMI Semiconductor's proprietary CMOS image sensing technology to integrate the sensors into a single monolithic chip. These sensors are optimally designed for applications in spectroscopy. Accordingly, these sensors contain a linear array of photodiodes with an optimized geometrical aspect ratio (50µm aperture pitch x 2500µm aperture width) for helping to maintain mechanical stability in spectroscopic instruments and for providing a large light-capturing ability. The family of sensors consists of photodiode arrays of various lengths - 128, 256 and 512 pixels.

The WSN photodiode arrays are mounted in 22-pin ceramic side-brazed dual-in-line packages that fit in standard DIP sockets. A diagram of its pin out configuration is seen in Figure 1.


2.0 Features

- 65pC saturation capacity for wide dynamic range
- Wide spectral response (180 1000nm) for UV and IR response
- NP junction photodiodes with superior resistance to UV damage
- Low dark current
- Integration time up to nine seconds at room temperature
- · Integration time extended to hours by cooling
- High linearity
- Low power dissipation (less than 1mW)
- Geometrical structure for enhanced stability and registration
- Standard 22 lead dual-in-line IC package

3.0 Sensor Characteristics

AMI Semiconductor's self-scanned WSN photodiodes are spaced on a 50μm pitch. The line density is 20 diodes/mm and accordingly the overall die lengths of the different arrays vary with the number of photodiodes. For example, the 128 pixel array is 6.4mm long, the 256 pixel array is 12.8mm long and the 512 pixel array is 25.6mm long. Each array has four additional dummy photodiodes. On each side, there is one dark (non-imaging) dummy photodiode and one imaging dummy photodiode. The height of the sensors is 2500μm. The tall, narrow apertures make these sensors desirable for use in monochromators and spectrographs.

During normal operation, the photons incident in or near the NP photodiode junction generate free charges that are collected and stored on the junction's depletion capacitance. The number of collected charges is proportional to the light exposure. Figure 3 shows the stored signal charge as function of light exposure at a wavelength of 575nm. The exposure is the product of the light intensity in nW/cm² and integration time in seconds. The charge accumulates linearly until reaching the saturation charge, and the corresponding exposure is the saturation exposure.

The responsivity may be calculated as the saturation charge divided by saturation exposure. The predicted typical responsivity of a photodiode is 3.5×10^{-4} C/J/cm² at 575nm. Figure 4 shows the predicted responsivity of the photodiodes as a function of wavelength.

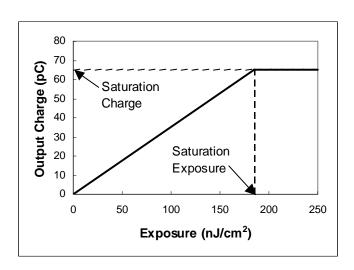
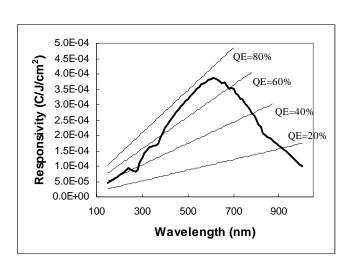
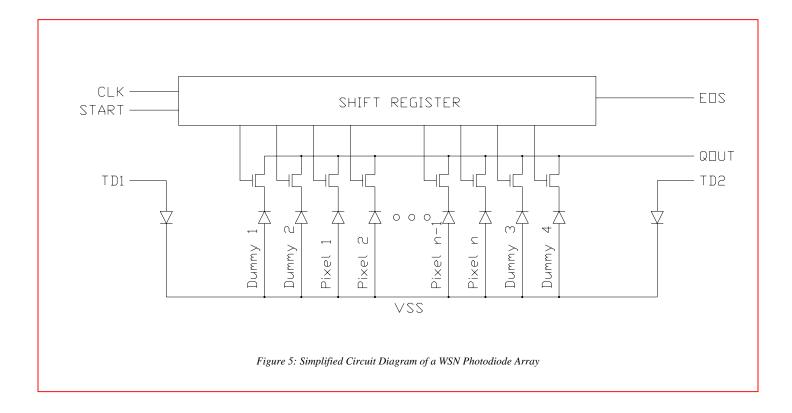


Figure 3: Stored Signal Charge as a Function of Exposure at a Wavelength of 575nm




Figure 4: Predicted Spectral Response

Note: Quantum efficiency (QE) can be calculated by dividing the responsivity by the area of the sensor's element and multiplying the resulting ratio by the energy per photon in electron volts (eV).

The dark current is typically 0.2pA at 25°C and varies as function of temperature. The dark current will contribute dark-signal charges and these charges will increase linearly with integration time. The dark signal and the photo generated signal combined result in the total signal charge.

4.0 Self-Scanning Circuit

Figure 5 shows a simplified electrically equivalent circuit diagram of the photodiode array. An MOS read switch connects every photodiode in the array to a common output video line. Incident photons generate electron charge that is collected on each imaging photodiode while the switch is open. The shift register is activated by the start pulse. A pulse propagates through each shift register stage and activates the MOS read switches sequentially. As the shift register sequentially closes each read switch, the negative stored charge, which is proportional in amount to the light exposure, from the corresponding photodiode, is readout onto the video line, QOUT. Typically, an external charge-integrating amplifier senses the negative output charge on the video line from each photodiode pixel. The shift register continues scanning the photodiodes in sequence, until the last shift register stage is reach, at which time the fourth and last dummy pixel is read out and end-of-scan (EOS) output is held high for one clock cycle. The next start pulse can then restart the shift register.

5.0 I/O Pins

Although the WSN package has 22 pins, as shown in Figure 1, there are only six functionally active I/O pins in addition to the supply pins, as shown in Figure 5. In essence, only two clocks, CLK and START, are required for controlling the timing of the sensor's video readout. The remaining I/O descriptions are for the video signal output, the end-of-scan signal, the two temperature diodes, and the supply biases. QOUT must be biased externally to Vbias (see Section 7.0 Recommended Operating Conditions). Each temperature diode is operated with a small constant current that forward-biases its PN junction. By measuring the forward-bias voltage, one can track the silicon die temperature. The temperature diodes may be disabled by connecting their anodes to VSS. These I/Os are listed with their acronym designators and functional descriptions in the following Table 1.

Table 1: Symbols and Functions and I/O Pins

Symbol	Function and Description
VSS	Ground
VDD	+5.0V
START	Start pulse: input to start the line scan
CLK	Clock pulse: input to clock the shift register
EOS	End of scan: output from the shift register to indicate the completion of one line scan
QOUT	Video charge output: output from the photodiodes pixels
TD1	Temperature diode 1: anode of temperature diode 1
TD2	Temperature diode 2: anode of temperature diode 2
NC	No connection

6.0 Clock and Voltage Requirements

The clocking requirements are relatively simple. As it was indicated in Figure 5 and Table 1, there are only two input signals that require clocked inputs. They are CLK, the clock for the shift register, and START, the shift register start pulse. The timing specifications and the symbol definition for Figure 6 are listed in Table 2. The control clock amplitudes for I/Os are compatible with the 5V CMOS devices.

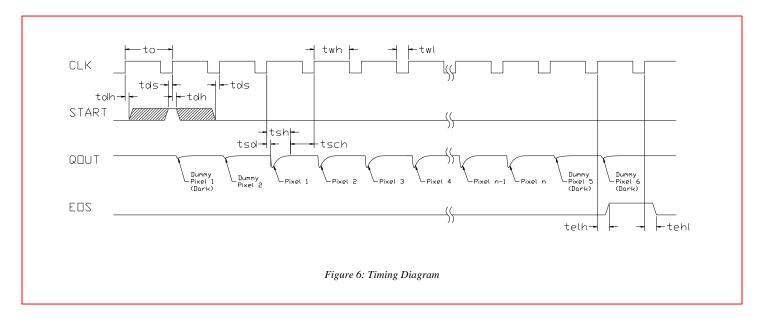


Table 2: Symbol Definitions and Timing Specifications for Timing Diagram

Item	Symbol	Min.	Тур.	Max.	Units
Clock cycle time	to	666 (AMIS-732128) 666 (AMIS-732256) 1000 (AMIS-732512)	10000		ns
Clock high pulse width	twh	566 (128WSN) 566 (256WSN) 900 (512WSN)			ns
Clock low pulse width	twl	100			ns
Clock duty cycle		1	50	99	%
Data setup time	tds	100			ns
Data hold time	tdh	100			ns
EOS low-to-high delay	telh			400	ns
EOS high-to-low delay	tehl			400	ns
Signal delay time	tsd	50			ns
Signal settling time	tsh			566 (AMIS-732128) 566 (AMIS-732256) 900 (AMIS-732512)	ns
Signal settle to clock edge	tsch	0			ns

7.0 Recommended Operating Conditions

The following table lists the recommended operating conditions.

Table 3: Recommended Operating Conditions at 25°C

Parameters	Symbol	Min.	Тур.	Max.	Units
Power supply	VDD	4.5	5.0	5.5	V
Input clock pulses high level 1	Vih	VDD - 0.8	VDD	VDD	V
Input clock pulse low level 1	Vil	0.0	0.0	0.8	V
Video charge output external bias	Vbias	VDD - 0.5	VDD - 0.5	VDD	V
Clock frequency	Fclk		0.1	1.5 (AMIS-732128) 1.5 (AMIS-732256) 1.0 (AMIS-732512)	MHz
Integration time ²	Tint	0.09 (AMIS-732128) 0.18 (AMIS-732256) 0.52 (AMIS-732512)		9000	ms

Notes:

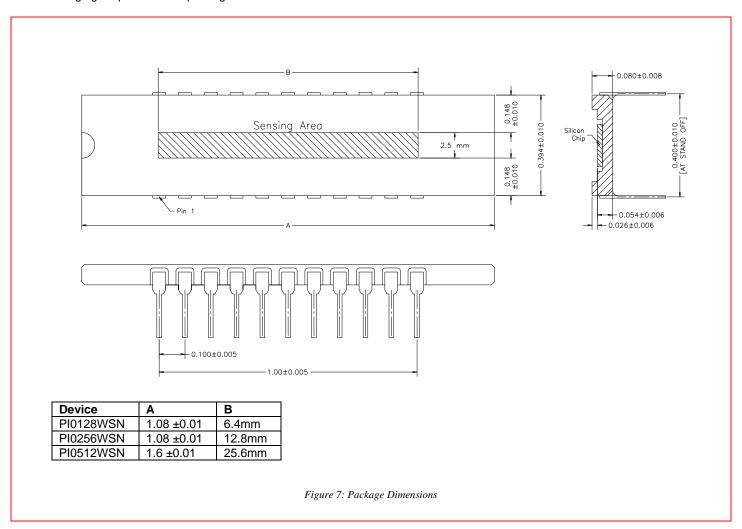
- 1. Applies to all control-clock inputs.
- The Integration time is specified at room temperature such that the maximum dark current charge build up in each pixel is less than 10 percent of the minimum saturation charge. Accordingly, it may be as long as nine seconds at room temperature. Longer integration times may be achieved by cooling the device. An appropriate clock frequency must be chosen so that the shift register completes its operation within the desired integration time.

8.0 Electro-Optical Characteristics

The following table lists the electro-optical characteristics.

Table 4: Electro-Optical Characteristics at 25°C

Parameters	Symbol	Min.	Тур.	Max.	Units	
Center-to-center spacing			50		μm	
Aperture width			2500		μm	
Pixel area	A		1.25x10 ⁻³		cm ²	
Fill factor 1	FF		86		%	
Quantum efficiency 1,2	QE		70		%	
Responsivity 1,2	R		3.5×10 ⁻⁴		C/J/cm ²	
Non-uniformity of response 3			2	5	+/-%	
Saturation exposure ²	Esat	160	185		nJ/cm ²	
Saturation charge 4	Qsat	55	65		pC	
Average dark current ⁵			0.2	0.6	pA	
Spectral response peak	λ		600		nm	
Spectral response range ⁶			180 – 1000		nm	


Notes:

- 1. Fill factor, quantum efficiency and responsivity are related by the equation $R = (q_e \lambda / hc) QEFFA$, where q_e is the charge of an electron and hc/λ is the energy of a photon at a given wavelength. Responsivity is therefore given per pixel.
- 2. At wavelength of 575nm (yellow-green) and with no window.
- 3. Measured at 50 percent Vsat with an incandescent tungsten lamp filtered with an Schott KG-1 heat-absorbing filter.
- 4. Saturation charge specified for a video output bias of 4.5V.
- 5. Max. dark leakage ≤ 1.5 x average dark leakage measured with an integration period of 500ms at 25°C.
- 6. From 250-1000nm, responsivity ≥ 20 percent of its peak value.

9.0 Package Dimensions

The following figure provides the package dimensions.

Note: Dimensions are in inches except where millimeters (mm) are indicated.

10.0 Company or Product Inquiries

For more information about AMI Semiconductor, our technology and our product, visit our Web site at: http://www.amis.com

North America

Tel: +1.208.233.4690 Fax: +1.208.234.6795

Europe

Tel: +32 (0) 55.33.22.11 Fax: +32 (0) 55.31.81.12

Production Technical Data - The information contained in this document applies to a product in production. AMI Semiconductor and its subsidiaries ("AMIS") have made every effort to ensure that the information is accurate and reliable. However, the characteristics and specifications of the product are subject to change without notice and the information is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify that data being relied on is the most current and complete. AMIS reserves the right to discontinue production and change specifications and prices at any time and without notice. Products sold by AMIS are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMIS makes no other warranty, express or implied, and disclaims the warranties of noninfringement, merchantability, or fitness for a particular purpose. AMI Semiconductor's products are intended for use in ordinary commercial applications. These products are not designed, authorized, or warranted to be suitable for use in life-support systems or other critical applications where malfunction may cause personal injury. Inclusion of AMIS products in such applications is understood to be fully at the customer's risk. Applications requiring extended temperature range, operation in unusual environmental conditions, or high reliability, such as military or medical life-support, are specifically not recommended without additional processing by AMIS for such applications. Copyright © 2005 AMI Semiconductor, Inc.

